The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants $G, h$ and $c$ . Which of the following correctly gives the Planck length?
$G^2hc$
${\left( {\frac{{Gh}}{{{c^3}}}} \right)^{\frac{1}{2}}}$
${G^{\frac{1}{2}}}{h^2}c$
$Gh^2c^3$
If energy $(E)$, velocity $(v)$and force $(F)$ be taken as fundamental quantity, then what are the dimensions of mass
Given that $\int {{e^{ax}}\left. {dx} \right|} = {a^m}{e^{ax}} + C$, then which statement is incorrect (Dimension of $x = L^1$) ?
A length-scale $(l)$ depends on the permittivity $(\varepsilon)$ of a dielectric material. Boltzmann constant $\left(k_B\right)$, the absolute temperature $(T)$, the number per unit volune $(n)$ of certain charged particles, and the charge $(q)$ carried by each of the particless. Which of the following expression($s$) for $l$ is(are) dimensionally correct?
($A$) $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$
($B$) $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$
($C$)$l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$
($D$) $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$
A small steel ball of radius $r$ is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity $\eta $. After some time the velocity of the ball attains a constant value known as terminal velocity ${v_T}$. The terminal velocity depends on $(i)$ the mass of the ball $m$, $(ii)$ $\eta $, $(iii)$ $r$ and $(iv)$ acceleration due to gravity $g$. Which of the following relations is dimensionally correct
In terms of potential difference $V$, electric current $I$, permittivity $\varepsilon_0$, permeability $\mu_0$ and speed of light $c$, the dimensionally correct equation$(s)$ is(are)
$(A)$ $\mu_0 I ^2=\varepsilon_0 V ^2$ $(B)$ $\varepsilon_0 I =\mu_0 V$ $(C)$ $I =\varepsilon_0 cV$ $(D)$ $\mu_0 cI =\varepsilon_0 V$